A Diagnostic Model for Identification of Myocardial Infarction from Electrocardiography Signals

26 December 2017 Tuesday

Electrocardiography (ECG) is a useful test used commonly to observe the electrical activity of a heart. Recently, a growing relationship has been observed between diagnosis of a disease and using of machine learning techniques. In this scope, a diagnostic application model designed based on a combination of Recursive Feature Eliminator (RFE) and two different machine learning algorithms called as -nearest neighbors (-NN) and artificial neural network (ANN) is proposed for classification of ECG signals in this study. The experiments performed on an open-access ECG database. Firstly, the signals were passed a pre-processing step. Then, several diagnostic features from morphological and statistical domains were extracted from the signals. In the last stage of the analysis, RFE algorithm covering 10-fold cross-validation and the mentioned machine learning techniques were employed to separate abnormal Myocardial Infarction (MI) samples from normal. The promising results as accuracy of 80.60%, sensitivity of 86.58% and specificity of 64.71% were achieved. The validation of the contribution was checked by comparing the performances of both -NN and ANN to related works. Consequently, the proposed diagnostic model ensured an automatic and robust ECG signal classification model.

Research Community


The members prepare universal papers collaboratively.

Join us

Please feel free to join us. This is a sharing platform.


The papers published by the community can be examined easily at here.


Soon, you can download CTG-OAS. We are waiting for completion of the publication process.

Please feel free to meet and join us.

This is an academic platform. Please feel free to meet and join us. A wide variety of talented members give our team the opportunity to innovate in nearly every domain of Biomedical Signal Processing, especially Cardiotocography.

The lastest publications!

Let's Get In Touch!

Ready to start your next manuscript with us? That's great! Send us an email and we will get back to you as soon as possible!